1,384 research outputs found

    A cDNA Encoding a 19-Kilodalton Subunit of Protoplast-Release-Inducing Protein from Closterium

    Full text link

    Volumetric formulation of lattice Boltzmann models with energy conservation

    Full text link
    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.Comment: 8 figure

    Production of interleukin-10 by alveolar macrophages from lung cancer patients

    Get PDF
    AbstractInterleukin (IL)-10 is known to be an autoregulatory factor of functions of monocyte macrophages. The purpose of this study was to determine whether IL-10 production by alveolar macrophages (AMs) is altered in patients with lung cancer. AMs were obtained by bronchoalveolar lavage from 25 patients with lung cancer and 14 control patients. The production of IL-10 by AMs was quantitated by enzyme immunoassay with or without stimulation with lipopolysaccharide (LPS). No significant difference in spontaneous and LPS-stimulated IL-10 production by AMs was observed between lung cancer patients and control patients (mean ± sem; 288·0 ± 56·7 vs. 249·6 ± 58·4 pg ml−1). IL-10 production of LPS-stimulated AMs was not impaired even in lung cancer patients with systemic metastasis. IL-4 failed to suppress LPS-induced production of IL-10 by AMs both in control patients and in lung cancer patients. In eight patients with lung cancer, IL-10 production by AMs was estimated before and after systemic chemotherapy and IL-10 production by LPS-stimulated AMs tended to increase after systemic chemotherapy from 152·3 ± 51·9 to 278·0 ± 112·8 pg ml−1. As IL-10 is a potent inhibitor of tumour angiogenesis, an important process of tumour progression, these results suggest that, even in advanced cancer patients, macrophages can produce potent angiogenesis inhibitor and systemic chemotherapy may augment this inhibitory activity in the lung

    Incorporating Forcing Terms in Cascaded Lattice-Boltzmann Approach by Method of Central Moments

    Full text link
    Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to improve numerical stability. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.Comment: 55 pages, 4 figure

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    A hierarchy of models related to nanoflows and surface diffusion

    Get PDF
    In last years a great interest was brought to molecular transport problems at nanoscales, such as surface diffusion or molecular flows in nano or sub-nano-channels. In a series of papers V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker proposed to use kinetic theory in order to analyze the mechanisms that determine mobility of molecules in nanoscale channels. This approach proved to be remarkably useful to give new insight on these issues, such as density dependence of the diffusion coefficient. In this paper we revisit these works to derive the kinetic and diffusion models introduced by V. D. Borman, S. Y. Krylov, A. V. Prosyanov and J. J. M. Beenakker by using classical tools of kinetic theory such as scaling and systematic asymptotic analysis. Some results are extended to less restrictive hypothesis
    • …
    corecore